Package: glmvsd (via r-universe)

September 3, 2024

Type Package Title Variable Selection Deviation Measures and Instability Tests for High-Dimensional Generalized Linear Models Version 1.5 Date 2022-08-13 Author Ying Nan <nanx0006@gmail.com>, Yanjia Yu <yuxxx748@umn.edu>, Yi Yang <yi.yang6@mcgill.ca>, Yuhong Yang <yyang@stat.umn.edu> Maintainer Yi Yang <yi.yang6@mcgill.ca> Depends stats, MASS, glmnet, ncvreg, brglm, parallel Description Variable selection deviation (VSD) measures and instability tests for high-dimensional model selection methods such as LASSO, SCAD and MCP, etc., to decide whether the sparse patterns identified by those methods are reliable. License GPL-2 URL https://github.com/emeryyi/glmvsd Date/Publication 2022-08-13 18:26:57 NeedsCompilation no Repository https://archer-yang-lab.r-universe.dev RemoteUrl https://github.com/archer-yang-lab/glmvsd RemoteRef HEAD RemoteSha 624030885b7a76242599d225f5fc781f9183320a Contents

glmvsd		•				•								•							•		•			 •					•				2
stability.test		•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	5

8

Index

Description

The package calculates the variable selection deviation (VSD) to measure the uncertainty of the selection in terms of inclusion of predictors in the model.

Usage

Arguments

x	Matrix of predictors.
У	Response variable.
n_train	Size of training set when the weight function is ARM or ARM with prior. The default value is $n_train=ceiling(n/2)$.
no_rep	Number of replications when the weight function is ARM and ARM with prior. The default value is no_rep=100.
n_train_bound	When computing the weights using "ARM", the candidate models with the size larger than n_train_bound will be dropped. The default value is n_train-2.
n_bound	When computing the weights using "AIC" or "BIC", the candidate models with the size larger than n_{train} bound will be dropped. The default value is $n-2$.
<pre>model_check</pre>	The index of the model to be assessed by calculating the VSD measures.
psi	A positive number to control the improvement of the prior weight. The default value is 1.
family	Choose the family for GLM models. So far only gaussian, binomial and tweedie are implemented. The default is gaussian.
method	User chooses one of the union and customize. If method=="union", then the program automatically provides the candidate models as a union of solution paths of Lasso, SCAD, and MCP; If method="customize", the user must provide their own set of candidate models in the input argument candidate_models as a matrix, each row of which is a 0/1 index vector representing whether each variable is included/excluded in the model.
candidate_mode	
	Only available when method="customize". It is a matrix of candidate models, each row of which is a 0/1 index vector representing whether each variable is included/excluded in the model.

glmvsd

weight_type	Options for computing weights for VSD measure. User chooses one of the ARM, AIC and BIC. The default is BIC.
prior	Whether use prior in the weight function. The default is TRUE.
reduce_bias	If the binomial model is used, occasionally the algorithm might has convergence issue when the problem of so-called complete separation or quasi-complete separation happens. Users can set reduce_bias=TRUE to solve the issue. The algorithm will use an adjusted-score approach when fitting the binomial model for computing the weights. This method is developed in Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika 80, 27-38.

Details

See Reference section.

Value

A "glmvsd" object is retured. The components are:

candidate_model	s_cleaned
	Cleaned candidate models: the duplicated candidate models are cleaned; When computing VSD weights using AIC and BIC, the models with more than n-2 variables are removed (n is the number of observaitons); When computing VSD weights using ARM, the models with more than n_train-2 variables are removed (n_train is the number of training observations).
VSD	Variable selection deviation (VSD) value.
VSD_minus	The lower VSD value of model_check, representing the number of predictors in the model (model_check) not quite justified at the present sample size.
VSD_plus	The upper VSD value of model_check model, representing the number of pre- dictors missed by the model (model_check).
Precision	A vector of precision values computed using each candidate model.
Recall	A vector of recall values computed using each candidate model.
Fmeasure	F-measure for the given model under check.
Gmeasure	G-measure for the given model under check.
sd.F	Estimated standard deviation of F-measure for the given model under check.
sd.G	Estimated standard deviation of G-measure for the given model under check.
weight	The weight for each candidate model.

References

Nan, Y. and Yang, Y. (2013), "Variable Selection Diagnostics Measures for High-dimensional Regression," *Journal of Computational and Graphical Statistics*, 23:3, 636-656. BugReport: https://github.com/emeryyi/glmvsd

glmvsd

Examples

```
# REGRESSION CASE
# generate simulation data
n <- 50
p <- 8
beta <- c(3,1.5,0,0,2,0,0,0)
sigma <- matrix(0,p,p)</pre>
for(i in 1:p){
   for(j in 1:p) sigma[i,j] <- 0.5^abs(i-j)</pre>
}
x <- mvrnorm(n, rep(0,p), sigma)</pre>
e <- rnorm(n)
y <- x %*% beta + e
# user provide a model to be checked
model_check <- c(0,1,1,1,0,0,0,1)</pre>
# compute VSD for model_check using ARM with prior
v_ARM <- glmvsd(x, y, n_train = ceiling(n/2),</pre>
no_rep=50, model_check = model_check, psi=1,
family = "gaussian", method = "union",
weight_type = "ARM", prior = TRUE)
# compute VSD for model_check using AIC
v_AIC <- glmvsd(x, y,</pre>
model_check = model_check,
family = "gaussian", method = "union",
weight_type = "AIC", prior = TRUE)
# compute VSD for model_check using BIC
v_BIC <- glmvsd(x, y,</pre>
model_check = model_check,
family = "gaussian", method = "union",
weight_type = "BIC", prior = TRUE)
# user supplied candidate models
candidate_models = rbind(c(0,0,0,0,0,0,0,1),
c(0,1,0,0,0,0,0,1), c(0,1,1,1,0,0,0,1),
c(0,1,1,0,0,0,0,1), c(1,1,0,1,1,0,0,0),
c(1,1,0,0,1,0,0,0))
v1_BIC <- glmvsd(x, y,</pre>
model_check = model_check, psi=1,
family = "gaussian",
method = "customize",
candidate_models = candidate_models,
weight_type = "BIC", prior = TRUE)
```

```
# CLASSIFICATION CASE
```

generate simulation data

4

stability.test

```
n = 300
p = 8
b <- c(1,1,1,-3*sqrt(2)/2)</pre>
x=matrix(rnorm(n*p, mean=0, sd=1), n, p)
feta=x[, 1:4]%*%b
fprob=exp(feta)/(1+exp(feta))
y=rbinom(n, 1, fprob)
# user provide a model to be checked
model_check <- c(0,1,1,1,0,0,0,1)</pre>
# compute VSD for model_check using BIC with prior
b_BIC <- glmvsd(x, y, n_train = ceiling(n/2),</pre>
family = "binomial",
no_rep=50, model_check = model_check, psi=1,
method = "union", weight_type = "BIC",
prior = TRUE)
candidate_models =
rbind(c(0,0,0,0,0,0,0,1),
c(0,1,0,0,0,0,0,1),
c(1,1,1,1,0,0,0,0),
c(0,1,1,0,0,0,0,1),
c(1,1,0,1,1,0,0,0),
c(1,1,0,0,1,0,0,0),
c(0,0,0,0,0,0,0,0),
c(1,1,1,1,1,0,0,0))
# compute VSD for model_check using AIC
# user supplied candidate models
b_AIC <- glmvsd(x, y,</pre>
family = "binomial",
model_check = model_check, psi=1,
method = "customize",
candidate_models = candidate_models,
weight_type = "AIC")
```

stability.test Instability tests

Description

This function calculate the sequential, parametric bootstrap and perturbation instability measures for linear regression with Lasso, SCAD and MCP penalty.

Usage

```
stability.test(x, y,
method = c("seq", "bs", "perturb"),
penalty = c("LASSO", "SCAD", "MCP"),
```

```
nrep = 50, remove = 0.2, tau = 0.5, nfolds = 5,
family=c("gaussian","binomial"))
```

Arguments

х	Matrix of predictors.
У	Response variable.
method	Type of instability measures. seq = sequential instability, bs = parametric boot- strap instability, and perturb = perturbation instability.
penalty	Penalty function.
nrep	Number of repetition for calculating instability, default is 50.
remove	The portion of observation to be removed when the sequential instability is cal- culated, default is 0.2.
tau	The size of perturbation when perturbation instability is calculated. The range of tau is $(0,1)$, default is 0.5
nfolds	number of folds - default is 5.
family	Choose the family for the instability test. So far only gaussian, binomial and tweedie are implemented. The default is gaussian.

Details

See Reference section.

Value

Return the instability index according to the type of instability measures.

References

Nan, Y. and Yang, Y. (2013), "Variable Selection Diagnostics Measures for High-dimensional Regression," *Journal of Computational and Graphical Statistics*, 23:3, 636-656. BugReport: https: //github.com/emeryyi/glmvsd

Examples

```
# generate simulation data
n <- 50
p <- 8
beta<-c(2.5,1.5,0.5,rep(0,5))
sigma<-matrix(0,p,p)
for(i in 1:p){
    for(j in 1:p) sigma[i,j] <- 0.5^abs(i-j)
}
x <- mvrnorm(n, rep(0,p), sigma)
e <- rnorm(n)
y <- x %*% beta + e</pre>
```

6

```
ins_seq <- stability.test(x, y, method = "seq",
penalty = "SCAD", nrep = 20,
remove = 0.1, tau = 0.2, nfolds = 5)
```

Index

glmvsd, 2

stability.test,5