Package: erboost 1.4

erboost: Nonparametric Multiple Expectile Regression via ER-Boost

Expectile regression is a nice tool for estimating the conditional expectiles of a response variable given a set of covariates. This package implements a regression tree based gradient boosting estimator for nonparametric multiple expectile regression, proposed by Yang, Y., Qian, W. and Zou, H. (2018) <doi:10.1080/00949655.2013.876024>. The code is based on the 'gbm' package originally developed by Greg Ridgeway.

Authors:Yi Yang [aut, cre], Hui Zou [aut], Greg Ridgeway [ctb, cph]

erboost_1.4.tar.gz
erboost_1.4.zip(r-4.5)erboost_1.4.zip(r-4.4)erboost_1.4.zip(r-4.3)
erboost_1.4.tgz(r-4.4-x86_64)erboost_1.4.tgz(r-4.4-arm64)erboost_1.4.tgz(r-4.3-x86_64)erboost_1.4.tgz(r-4.3-arm64)
erboost_1.4.tar.gz(r-4.5-noble)erboost_1.4.tar.gz(r-4.4-noble)
erboost_1.4.tgz(r-4.4-emscripten)erboost_1.4.tgz(r-4.3-emscripten)
erboost.pdf |erboost.html
erboost/json (API)

# Install 'erboost' in R:
install.packages('erboost', repos = c('https://archer-yang-lab.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 scripts 119 downloads 10 exports 1 dependencies

Last updated 10 months agofrom:056c604cd5. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-win-x86_64OKOct 22 2024
R-4.5-linux-x86_64OKOct 22 2024
R-4.4-win-x86_64OKNov 21 2024
R-4.4-mac-x86_64OKNov 21 2024
R-4.4-mac-aarch64OKNov 21 2024
R-4.3-win-x86_64OKNov 21 2024
R-4.3-mac-x86_64OKNov 21 2024
R-4.3-mac-aarch64OKNov 21 2024

Exports:erboosterboost.fiterboost.losserboost.moreerboost.perfpermutation.test.erboostplot.erboostpredict.erboostrelative.influencesummary.erboost

Dependencies:lattice